FluoroProbe III
The Instrument for Depth Profiles of Microalgae

Rapid and simple algae monitoring
Suitable for all surface waters: lakes, reservoirs, rivers and bathing water
The FluoroProbe III measures the chlorophyll-a of suspended phytoplankton in vivo. Microalgae of different classes and cyanobacteria (cyanophyceae) are part of a complex ecosystem related to zooplankton and higher organisms. Different algal classes (dinoflagellates) and cyanobacteria are known for their production of biotoxins. Since phytoplankton can be found at various depths in a water body, the estimation of the algal content of the water requires a rapid and sensitive profile measurement.

Fluorescence measurements using the FluoroProbe III fulfill these requirements and allow depth profiles to be recorded with the simultaneous analysis of different algal classes, all in real time. The results of the fluorescence spectroscopy of cultured algae and naturally present algae verify the comparability of spectral fluorescence characteristics and serve to evaluate and quantify the chlorophyll-a content of natural populations.

In this way, it is possible to follow the creation and development of algal blooms at high resolutions on the surface as well as at depths. Thus, the FluoroProbe III is the most suitable instrument for the comprehensive investigation of water bodies at phytoplankton level and for the determination of potentially harmful cyanobacteria.

We regularly check our reservoirs using the FluoroProbe. In contrast to lab methods the FluoroProbe delivers a quick overview of algal content in the reservoirs, and the depth profiles in particular help us to decide at what depth we should extract the raw water.

Anita Neuenhäuser
Drinking Water Department Head
Bergish Water and Environmental Laboratory of the BTV GmbH
Deployment sites of the FluoroProbe III

FluoroProbe III in the field

Using the FluoroProbe III in waterbodies, whether in rivers, reservoirs or lakes, is easy and simple with the bbe++ software. The software runs on any current Windows PC and communicates via a USB cable. Optionally, for use of the FP III via Bluetooth a smartphone with corresponding app including a GPS function is available. bbe++ controls all the measurements, the data transfer and the parameterisation. A clear overview allows simple measurement: after measuring the air pressure at the surface (key) for depth measurement, START and STOP signal the beginning and end of a measurement. The FluoroProbe III can be lowered into the water by hand or by using a winch – at a recommended speed of approximately 30 cm/sec. The measurement frequency is up to 4 measurements/second. Maximum depth with cable is 100 m. Real time data are available on the PC or smartphone display. The internal memory contains 10 million datasets.

This is helped by a determination of yellow substances and an automatic correction. The spectral characteristics of yellow substances are stored in the FluoroProbe III and can be adapted to a specific location when necessary. This also applies to algae with particular spectral characteristics: a calibration to a new algal class extends the range of application and increases the accuracy of the allocation of the algal classes. The advantage lies in the use of real algae for the calculation of chlorophyll-a values of natural samples.

For algae and cyanobacteria, nutrients and temperature play a significant role. The ambient temperature in the water is determined by the temperature sensor on the housing. An exact depth measurement is carried out synchronously using the built-in pressure sensor.

Site of application – what is performed?

The FluoroProbe III can be used in many different applications: e.g., in the field of limnology, lakes and rivers are sampled. Focus is given to ecological questions, in particular changes and status evaluation. Investigations can also be carried out in accordance with the EU Water Framework Directive. Moreover, for quality control the FluoroProbe III is also used in reservoirs, particularly for an analysis of potentially harmful cyanobacteria. Microcystis aeruginosa and Planktothrix rubescens. In this case, a surface water sample is often insufficient since the cyanobacteria prefer particular depths according to the time of year. The aim is the prediction of the dynamic of cyanobacteria blooms. In reservoirs, this concerns the avoidance of cyanotoxins biotoxins. Drinking water producers in Japan, for example, use the FluoroProbe III integrated in a pipe system. Research trips to the Caribbean and the Antarctic are evidence of the manifold uses of the FluoroProbe III. Nearshore areas are also used by aquaculture companies in the breeding of seafish. The use of feed and the formation of free nutrients promotes substantial growth of algae with all its undesired consequences. The FluoroProbe III documents the changes precisely via a high data density.

OUTDOORS

- Simple operation
- Settings and analysis with bbe++ software
- Optionally, handheld for real-time data analysis
- Submersion depth 0-1000 m
- Huge data memory
- Cable and cable-free measurements

FEATURES

- Calibration using algal cultures
- Temperature sensor
- Depth sensor

OUTDOORS

- Autostart plug
- Increased depth range
- Energy control
- Long-term measurement

ADDITIONAL USES

- Lab use with the Workstation25 and cuvette
- Test cuvette for function testing
- Flow-through measurement

USERS

- Reservoir operators
- Aquaculture farms
- Drinking water producers
- Assessors
- Ecologists, Limnologists
- Oceanographers

OUTDOORS

- Energy control
- Increased depth range
- Calibration using algal cultures
- Temperature sensor
- Depth sensor

Site of application – what is performed?

The FluoroProbe III is readily deployable without cable by use of an autostart plug. By attaching the plug, the measurement is started and continues until the plug is removed. Via a measurement cable or the USB adapter the data can be transferred to a PC or the USB flash drive supplied. The depth range of the FluoroProbe III is down to 300 m, optionally in a steel housing down to 1,000 m depth. The internal battery supplies the FluoroProbe III for extended underwater operation without an external power source. For longer operation bbe recommends the setting for sleep mode with low power usage and an optional wiper for the removal of biofilm from the optics. A steel cage has proved useful against mechanical damage during operation from the side of a ship or in rough environments.

Using the FluoroProbe III in the laboratory

The FluoroProbe III can also be deployed in the laboratory by using the specially developed Workstation25 as a stand for the instrument. The measurements of chlorophyll-a are performed in a 25 ml special cuvette made of optical glass. The optional stirrer motor ensures a homogenous distribution of the sample so that the algae (in particular diatoms) cannot settle. Ambient light is excluded from the optics by a specially designed cover. A test cuvette is also available for function testing. The FluoroProbe III can also be deployed in pipe systems using a specially designed Flow-Through Unit (inlet and outlet connections). The sample water can be transported using an external pump.

Site of application – what is performed?

For algae and cyanobacteria, nutrients and temperature play a significant role. The ambient temperature in the water is determined by the temperature sensor on the housing. An exact depth measurement is carried out synchronously using the built-in pressure sensor.

This also applies to algae with particular spectral characteristics: a calibration to a new algal class extends the range of application and increases the accuracy of the allocation of the algal classes. The advantage lies in the use of real algae for the calculation of chlorophyll-a values of natural samples.

For algae and cyanobacteria, nutrients and temperature play a significant role. The ambient temperature in the water is determined by the temperature sensor on the housing. An exact depth measurement is carried out synchronously using the built-in pressure sensor.

Site of application – what is performed?

For algae and cyanobacteria, nutrients and temperature play a significant role. The ambient temperature in the water is determined by the temperature sensor on the housing. An exact depth measurement is carried out synchronously using the built-in pressure sensor.

This also applies to algae with particular spectral characteristics: a calibration to a new algal class extends the range of application and increases the accuracy of the allocation of the algal classes. The advantage lies in the use of real algae for the calculation of chlorophyll-a values of natural samples.

For algae and cyanobacteria, nutrients and temperature play a significant role. The ambient temperature in the water is determined by the temperature sensor on the housing. An exact depth measurement is carried out synchronously using the built-in pressure sensor.

This also applies to algae with particular spectral characteristics: a calibration to a new algal class extends the range of application and increases the accuracy of the allocation of the algal classes. The advantage lies in the use of real algae for the calculation of chlorophyll-a values of natural samples.
The FluoroProbe III is prepared for immediate chlorophyll determination by factory calibration using standard algae. This is performed using a special spectrofluorometer (bbe ALA) which has been calibrated using HPLC analyses of extracted algal pigments. These reference spectra of the algae used for the determination of the chlorophyll-a are stored in the FluoroProbe III. Each algal class has a characteristic fluorescence spectrum (fingerprint) referring to the chlorophyll content present with regard to form and intensity. Based on the linear combination of the fluorescence signals created by the algal fluorescence of the sample algae, the measurement values obtained are compared with the reference data and distributed optimally across the different algal classes by means of a fit procedure. The total chlorophyll-a content results from the sum of the chlorophyll-a of the individual algal classes.

The software allows the user to perform additional calculations by activating or deactivating different algal classes in order to improve the adaptation if necessary. Different reference data from yellow substances can also be applied to the calculation.

The FluoroProbe III uses the supplied bbe++ software and stores the data in a database. bbe++ takes care of data transmission as well as the display of the results in graphs and tables. Macros enable easy pre-selection of suitable display options. The FluoroProbe III can also be operated and controlled in online mode using the bbe++ software. Access is organised in a clear basic and a complex expert mode with all the possibilities of such advanced software. The basic mode comprises all essential functions for operation in the field and the laboratory. The expert mode allows optimisation of the algal classes via a re-calculation using additional fingerprints. The bbe++ software allows the problem-free export of data to other programmes (e.g., Excel).

How is the chlorophyll-a calculated?

The FluoroProbe III uses the supplied bbe++ software and stores the data in a database. bbe++ takes care of data transmission as well as the display of the results in graphs and tables. Macros enable easy pre-selection of suitable display options. The FluoroProbe III can also be operated and controlled in online mode using the bbe++ software. Access is organised in a clear basic and a complex expert mode with all the possibilities of such advanced software. The basic mode comprises all essential functions for operation in the field and the laboratory. The expert mode allows optimisation of the algal classes via a re-calculation using additional fingerprints. The bbe++ software allows the problem-free export of data to other programmes (e.g., Excel).

Hints on care and calibration

The FluoroProbe III is almost completely maintenance-free. As with all optical instruments the optical path must be kept clean. Rinsing the optics with clean water is sufficient. In case of biofilm, bbe recommends manual cleaning or the use of an optional wiper which cleans the surface periodically between the measurements.

Re-calibration of the FluoroProbe III is recommended every two years. This can be performed in the calibration laboratory at bbe using standardised algal cultures. A technical inspection which can prevent errors during subsequent field operation can also be carried out at the same time.

For long-term operation at 1 measurement/sec the maximum operation time is 10 hours. If measurements are carried out once per day, the FluoroProbe III is deployable around 30 days. The maximum charging time is approx. 8 hours.
Technical Details of the FluoroProbe III

<table>
<thead>
<tr>
<th>DESCRIPTION</th>
<th>VALUES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measuring range</td>
<td>0 - 200 μg chlorophyll-a/l</td>
</tr>
<tr>
<td>Measurement principle</td>
<td>spectral fluorometry</td>
</tr>
<tr>
<td>Resolution</td>
<td>0.01 μg chlorophyll-a/l</td>
</tr>
<tr>
<td>Transmission</td>
<td>0 - 100 %</td>
</tr>
<tr>
<td>Water temperature</td>
<td>-2 to 40°C</td>
</tr>
<tr>
<td>Housing material</td>
<td>reinforced plastic / V4A Steel</td>
</tr>
<tr>
<td>Weight</td>
<td>6.4 kg (7.2 kg incl. light screen, in water 4.2 kg)</td>
</tr>
<tr>
<td>Dimensions (H x Ø)</td>
<td>450 x 140 mm</td>
</tr>
<tr>
<td>Voltage</td>
<td>12 V</td>
</tr>
<tr>
<td>Battery capacity</td>
<td>3900 mAh</td>
</tr>
<tr>
<td>Operating time</td>
<td>continuous operation approx. 10 hrs; interval approx. 30 days</td>
</tr>
<tr>
<td>Memory capacity</td>
<td>2 GB memory card - 10 million datasets</td>
</tr>
<tr>
<td>Interface</td>
<td>RS485 and USB</td>
</tr>
<tr>
<td>Maximum depth</td>
<td>0 - 100 m (standard)</td>
</tr>
<tr>
<td></td>
<td>0 - 300 m (extended)</td>
</tr>
<tr>
<td></td>
<td>0 - 1000 m (FluoroProbe III „Metal Shell“)</td>
</tr>
<tr>
<td>Options</td>
<td>cuvette holder (Workstation25), temperature/transmission measurement, measuring cables: 2 - 100 m, Hydro-Wiper unit, Bluetooth set</td>
</tr>
</tbody>
</table>

ADVANTAGES
- Replaces a considerable amount of time-intensive laboratory analysis
- No sample preparation needed
- Perfect addition to microscopy
- Real-time analysis of phytoplankton
- High measuring speed
- Turbidity correction
- Yellow substances correction
- Calibration using algal cultures
- Use of custom spectra
- Internal data logger
- Internal power supply, rechargeable
- Wide-ranging accessories

Do you have any questions? Please contact us!