CIRAS-4
Portable Photosynthesis System

Elevate your research

• Photosynthesis
• Chlorophyll Fluorescence
• Soil Respiration
• Canopy Assimilation
• Insect Respiration

PP SYSTEMS
ppsystems.com
CIRAS-4 The 4th generation portable powerhouse elevating high-level research experience worldwide.

High-level field research has changed. Researchers have a lot of data to collect and analyze, and not a lot of time.

- High-Contrast Full-Color Sunlight-Readable Touchscreen
 + Outstanding readability, particularly in bright sunlight
 + Advanced fast response touch navigation for all system operations
 + User-defined presentation of data (numeric, graphical or custom)
 + Optimized 30° viewing angle

- Three High Capacity Li-ion Battery Packs
 + 16+ hours of continuous operation
 + Uninterrupted, long operation
 + Charge all three batteries simultaneously

- Field-Rugged Enclosure
 + Lightweight aluminum enclosure
 + Shock-absorbing polyurethane base

CIRAS-4 Main Console
- Weight: 4.8 kg (including two battery packs)
- Dimensions: 28 cm (W) x 14.5 cm (D) x 24 cm (H)
Today's research demands fast response technology and the most precise data available. True portability, speed, and accuracy are key.

Unrivaled performance, portability & power

- **Truly portable!** Lightweight console (4.8 kg) & leaf cuvette (0.7 kg)
- **True differential gas analyzer** featuring four independent, non-dispersive infrared gas analyzers for both CO₂ & H₂O
- **Small system volume optimized for the fastest, most accurate measurement of photosynthesis available**
- **Automated & rapid A/C₅ measurement** based on both upward & downward CO₂ ramps in real time without post processing with our Single-Step CO₂ Response (SSCO₂R™) Method
- **Fully automatic, independent & programmable control** of CO₂, H₂O, temperature & light
- **Far-red LEDs** allow users control of up to 30% of Photon Flux Density (PFD)
- **16+ hours of continuous use** with three lightweight, energy-efficient Li-ion battery packs
- **Graph up to six parameters at once & customize X & Y axis for each**
- **Simultaneous measurement of photosynthesis & chlorophyll fluorescence**
- **32 GB data storage**
- **Powerful, highly customizable software**
- **Versatility** at its best with lightweight, field-ready plug & play accessories for several applications

PLC4 Universal Leaf Cuvette

- **Weight** 0.7 kg (not including cable)
- **Dimensions** 27.5 cm (L) x 3.75 cm (Handle Diameter)
 Head: 4.5 cm (L) x 4.5 cm (W) x 2.3 cm (H)
Size & Weight Matter

Portability is critical, particularly when field research takes you to remote sites. Having a system that is lightweight with a small footprint results in less site disturbance, greater access to hard-to-reach places, and reduced fatigue. At just 4.8 kg for the CIRAS-4 main console (including two Li-ion battery packs) and 0.7 kg for the leaf cuvette, field measurements become an entirely new research experience.

Packed with Power

Advanced system electronics coupled with three powerful, efficient Li-ion battery packs allow for continuous system operation for 16 hours or more. Collect a day’s-worth of data without the interruption of swapping out batteries.

Minimal Maintenance

The CIRAS-4 is remarkably low maintenance! Don’t concern yourself with routine service or maintenance of any electrical or mechanical components on the CIRAS-4 console—including the optical bench. Simply maintain easily accessible desiccants and filters and periodically inspect the leaf cuvette head and gaskets for dust, dirt, and any debris from vegetation.
obstacles while taking your research to the next level.

Additional Field-Friendly Features

+ **Plug & Play Accessories**
 All accessories are elegantly designed to connect directly to the CIRAS-4. *No assembly or disassembly required.*

+ **Changing Head Plates in the Field is Quick & Easy**
 All PLC4 Leaf Cuvette head plates are secured with magnets for quick and easy change out in the field.

+ **Two Different Cuvettes Offer a Total of Six Options**
 Working with multiple types of vegetation? The PLC4 Universal Leaf Cuvette comes standard with three different head plates. Need something larger? The PLC4 Broad/Narrow/Conifer Leaf Cuvette comes with three interchangeable heads.

+ **Automatically Control Light Intensity & Far-Red**
 The PLC4 Light Units are quick and easy to attach. You can automatically control light intensity up to 2,500 µmol m⁻² s⁻¹ and proportion of red, green, blue, and white LEDs. Our unique light unit design also includes far-red LEDs allowing users to control up to 30% of Photon Flux Density (PFD).

+ **Automatically Control or Create Air Supply Humidity**
 Built into the CO₂/H₂O control air supply, the CIRAS-4’s unique H₂O Vapor Equilibrator incorporates Nafion® gas tubing to ensure accurate, stable, and precise control of H₂O above and below ambient levels.

+ **CFM-4 Chlorophyll Fluorescence Module**
 The CFM-4 provides both dark- and light-adapted chlorophyll fluorescence measurement parameters as well as OJIP fast-induction kinetics. It can be used as both a fluorometer and as an actinic light source. All light sources and fluorescence detection capability is built into one single, compact module.

+ **Stand-Alone CO₂/H₂O IRGA**
 The CIRAS-4 console can be used independently for accurate, precise, and reliable measurement of CO₂ and H₂O. Do you have your own custom chambers that you would like to use? No problem! *Simply connect the gas lines to the CIRAS-4 and begin your measurements!*

+ **Ideal Flow Rates**
 The CIRAS-4 can be programmed to control flow rates up to 500 cc min⁻¹ resulting in fast response times, high differentials, and low signal-to-noise ratio on CO₂ and H₂O, particularly on small vegetation.
You're in Control The certainty of automated environmental control

CO₂ & H₂O Gas Analyzers

The heart & soul of any leaf gas exchange system

The backbone and most critical part of any leaf gas exchange system is the gas analysis system. The CIRAS-4 is a true differential analyzer featuring four independent, non-dispersive infrared gas analyzers (IRGAs) ensuring the most accurate and reliable measurement and control of CO₂ and H₂O available. For high-level research, this is a critical requirement and a major advantage over gas switching systems. For enhanced reliability, there are no moving parts and the optical bench is temperature controlled and pressure compensated for the most accurate and reliable measurement of CO₂ and H₂O under changing ambient conditions. Each gas analyzer includes an IR source, highly polished gold-plated sample cells, and detectors optimized for CO₂ (4.26 µm) and H₂O (2.60 µm).

Located in the console, the CIRAS-4’s optical bench is safely protected and filtered from even the harshest of environmental conditions, eliminating the need for any user maintenance or cleaning. The IRGAs are located close to the internal gas mixing system, providing tight control of gas flow and ultra-fast response to changes in the reference CO₂ and H₂O gas supply.

Our Unique Auto-Zero Technique

No factory recalibration required

Expect nothing less than the most accurate, reliable, and stable calibration of CO₂ and H₂O for many years without the need for inconvenient, time-consuming, and costly return-to-factory calibration. Our innovative, proprietary Auto-Zero measurement technique ensures an inherent calibration stability confirmed by more than 40 years of experience in gas analysis technology. It allows for very fast warm-up, quick adaptation to changing ambient conditions, and excellent long-term stability. Auto-Zero also minimizes effects on span gas sensitivity and IR source aging, as well as changes in detector sensitivity and electronics. Simple, periodic system checks are recommended to confirm system integrity and calibration.

CO₂ Measurement & Control

Automatic and programmable CO₂ control is standard with the CIRAS-4. PP Systems pioneered the method of controlling CO₂ back in 1992 (CIRAS-1) using mini CO₂ cartridges that are commercially available and easily sourced worldwide. Our proprietary gas mixing technology and CO₂ regulator provide accurate, stable, and constant flow of CO₂. Each CO₂ cartridge provides at least 12 hours of continuous use in the field and our CO₂ regulator and cartridge holder are maintenance free.

- **Measurement Range**: 0 – 10000 µmol mol⁻¹
- **Control Range**: 0 – 2000 µmol mol⁻¹

If required, the CIRAS-4 can easily be connected to an external CO₂ source as well as programmed and configured for ambient CO₂ measurements.

Environmental control is fast and easy.
H₂O Measurement & Control

PP Systems also pioneered the method of controlling H₂O automatically. Programmable H₂O control is standard with the CIRAS-4. Onboard, self-conditioning desiccants are used for controlling H₂O via user-defined settings. The CIRAS-4 can control H₂O based on a percentage of ambient, VPD (Vapor Pressure Deficit), or a specific H₂O concentration.

<table>
<thead>
<tr>
<th>Measurement Range</th>
<th>Control Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 – 75 mmol m⁻¹</td>
<td>0 – Dewpoint</td>
</tr>
</tbody>
</table>

The CIRAS-4 can easily be programmed for H₂O measurements above and below ambient, and can also be configured for ambient H₂O measurements.

Temperature Measurement & Control

The CIRAS-4 features the widest range, as well as the fastest and most reliable temperature control in the industry. Each leaf cuvette’s integral automatic temperature control is highly accurate and stable. Peltier coolers with heat sink and fan are mounted on all cuvette heads for precise control over a wide range of temperatures. The CIRAS-4 can be programmed to control to a specific leaf temperature, a specific cuvette air temperature, or to track leaf to ambient. Temperature control can also be disabled.

<table>
<thead>
<tr>
<th>Control Limits</th>
<th>Control Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 – 45 °C</td>
<td>12 °C below ambient to 15 °C above ambient</td>
</tr>
</tbody>
</table>

Light Measurement & Control

Automatic control of light intensity is achieved with our compact, low-power lightweight LED (RGBW-FR) light units available for each of our PLC4 Leaf Cuvettes.

<table>
<thead>
<tr>
<th>Measurement Range</th>
<th>Control Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 – 3000 µmol m⁻² s⁻¹</td>
<td>0 – 2500 µmol m⁻² s⁻¹</td>
</tr>
</tbody>
</table>

Each light unit features a bank of red, green, blue, and white LEDs. Far-red LEDs allow users control of up to 30% of Photon Flux Density (PFD). In addition to controlling light intensity, you can also control the proportion of light by wavelength, which can be especially useful for research on plant responses to different wavelengths.

Trusted accuracy & reliability provide the freedom to focus on the important work to be done.
Photosynthesis & Chlorophyll Fluorescence
The compact, lightweight & versatile solution for both measurements.

CFM-4 Chlorophyll Fluorescence Module

If your research includes chlorophyll fluorescence, you can measure it simultaneously with photosynthesis with the CFM-4 Chlorophyll Fluorescence Module.

MultiPulse™ technology for accurate estimation of F_m'
The CFM-4 is capable of delivering high-saturating pulses up to 10000 µmol m^{-2} s^{-1}. The CIRAS-4 is the only system available that features our innovative MultiPulse™ technology. MultiPulse™ produces a sequence of user-defined, lower-saturating pulse light levels, avoiding the risk of photodamage to the leaf while accurately estimating apparent F_m'.

A pulse-amplitude-modulated (PAM) fluorometer, the CFM-4 provides both dark- and light-adapted chlorophyll fluorescence measurement parameters including photochemical vs. non-photochemical quenching and electron transport rate.

Light source & fluorescence detection in one accessory!
The CFM-4 is elegantly designed with all light sources and fluorescence detection capabilities built directly into one lightweight, compact unit. The CFM-4 can also act as an actinic light source for leaf gas exchange as well as a stand-alone fluorometer when leaf gas exchange data is not required.

OJIP fast-induction kinetics
The CFM-4 provides OJIP fast-induction kinetics. OJIP-related data are easily stored and exported for further analysis providing additional fluorescence-related calculations.

Multiple leaf apertures
The compact module is lightweight (0.3 kg), truly plug and play, and allows the user to measure chlorophyll fluorescence over the entire leaf area using any of the three leaf head plates that come standard with the PLC4 Universal Leaf Cuvette.

Automatic control
Users can automatically control temperature and light intensity as well as proportion of red, blue, green, white, and far-red LEDs.

Temperature Control Range
12 °C below ambient to 15 °C above ambient

Light Control Range
0 - 2500 µmol m^{-2} s^{-1}

Far-Red Control Range
0 - 30% of PFD

<table>
<thead>
<tr>
<th>Measured</th>
<th>Calculated</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>F_v</td>
</tr>
<tr>
<td>F_S</td>
<td>F_v/F_m</td>
</tr>
<tr>
<td>F_O</td>
<td>F_v'</td>
</tr>
<tr>
<td>F_m</td>
<td>F_m'</td>
</tr>
<tr>
<td>$F_{O'}$</td>
<td>F_v/F_m'</td>
</tr>
</tbody>
</table>

Chlorophyll Fluorescence Parameters

ppsystems.com sales@ppsystems.com
Researchers perform rapid A (Assimilation) vs. C\textsubscript{i} (Intercellular CO\textsubscript{2}) curves to provide parameters for photosynthetic characteristics of leaves beyond those derived from any single A and C\textsubscript{i} measurement including:

* Maximum capacity of the ribulose bis-phosphate carboxylase enzyme (Rubisco-V\textsubscript{cmax})
* Maximum rate of photosynthetic electron transport (J\textsubscript{max})
* Maximum rate of triose phosphate utilization (TPU\textsubscript{cmax})

For years, researchers have optimized survey time without sacrificing accuracy by utilizing our proprietary gas mixing system to perform our unique Stored Differential Balance (SDB). The SDB is a self-calibration routine to accurately measure and store CO\textsubscript{2} and H\textsubscript{2}O concentrations over a series of levels, eliminating steady-state response interruptions to balance or match reference and analysis gas analyzers.

Our High-Speed CO\textsubscript{2} Ramping Technique:
A proven & reliable process*

The CIRAS-4’s SDB and our High-Speed CO\textsubscript{2} Ramping Technique allow users to experience incredibly fast, non-steady-state A/C\textsubscript{i} measurements based on both upward and downward ramps in minutes. The fully automatic and programmable process is built into the software, further simplifying setup.

Benefits of upward & downward ramps
Increasing CO\textsubscript{2} ramps can be stopped when the apparent assimilation rate is no longer increasing with CO\textsubscript{2}, rather than waiting for the CO\textsubscript{2} to get to the maximum programmed value—saving significant time per ramp.

The advantage of running decreasing CO\textsubscript{2} ramps is that information is obtained at a lower range of CO\textsubscript{2} values, compared with increasing CO\textsubscript{2} ramps.

Ultra-Fast A/C\textsubscript{i} Curves

The fastest method available for rapid measurement of A/C\textsubscript{i}. Generate data in real time—no post processing.

The SSCO\textsubscript{2}R™ Method

Highly accurate rapid A/C\textsubscript{i} curves in real time & no post processing!

The Single-Step CO\textsubscript{2} Response (SSCO\textsubscript{2}R™) Method is a new high-speed CO\textsubscript{2} ramping technique that eliminates all post processing and can generate data for A vs. C\textsubscript{i} directly on the CIRAS-4 console in real time.

With the SSCO\textsubscript{2}R™ Method, reference and analysis channels have identical time responses to a CO\textsubscript{2} ramp and delta CO\textsubscript{2} would be zero during the empty chamber test, eliminating the need for any corrections to A or C\textsubscript{i}.

If your research includes the measurement of non-steady-state A/C\textsubscript{i} curves, the SSCO\textsubscript{2}R™ Method is the fastest, most accurate, streamlined method available for the rapid measurement of A/C\textsubscript{i} — more measurements and data points in a much shorter period of time!

PLC4 Leaf Cuvettes

Fast equilibration & response time
Overall small system volume means almost immediate response times and fast equilibration.

Head plates secured by magnets
All head plates are secured in place by magnets for quick and easy change out in the lab or field.

Rulers on apertures
Rulers are available on larger head plates to assist with better leaf area approximation.

Minimal boundary layer resistance
Advanced air mixing inside the chamber reduces boundary layer resistance.

Temperature control
All PLC4 Leaf Cuvettes offer a temperature control range of approximately 12°C below ambient up to 15°C above ambient with 0.1°C precision.

PAR
Two miniature PAR sensors provide a highly reliable average of PAR inside the cuvette. Ambient PAR is measured by an external sensor with industry standard calibration and cosine correction.

Easy & accurate leak diagnosis
Direct pressure measurement inside the cuvette allows for easy and accurate leak diagnosis.

PLC4 Universal Leaf Cuvette

The PLC4 Universal Leaf Cuvette measures most flat, broad leaf plants and comes standard with three interchangeable window head plates that are easy to swap out, allowing you to accommodate a wide range of different leaf sizes. A technologically advanced infrared (IR) sensor provides accurate, non-contact measurement of leaf temperature. Leaf temperature can also be determined by energy balance.

PLC4 Broad/Narrow/Conifer Leaf Cuvette

The PLC4 Broad/Narrow/Conifer Leaf Cuvette comes with three interchangeable heads for measurement on large, flat broad leaves, narrow leaves, grasses, and conifers. Leaf temperature is measured via the non-contact IR sensor, directly using a precision thermistor or calculated using energy balance.
Lightweight & Field-Flexible
Revolutionizing the field research experience.

PLC4 LED Light Units (RGBW-FR)
Automatically control both light intensity & proportion of light by wavelength

Optional light units are available for automatic control of light for all PLC4 leaf cuvettes. Each light unit features a bank of red, green, blue, white, and far-red LEDs (RGBW-FR) allowing for automatic control of both light intensity up to 2500 µmol m⁻² s⁻¹ and proportion (%) of light by wavelength. All light units are designed to ensure uniform light distribution over the entire leaf area for accurate results.

Far-red
Our PLC4 LED Light Units also include 4 far-red LEDs. CIRAS-4 users can control far-red up to 30% of Photon Flux Density (PFD), for a more accurate recreation of the natural light environment.

<table>
<thead>
<tr>
<th>Wavelength (RGBW-FR)</th>
<th>Peak</th>
<th>Full Width at Half Max</th>
<th>Light Control Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red</td>
<td>625 nm ± 5 nm</td>
<td>15 nm</td>
<td>0 – 2500 µmol m⁻² s⁻¹</td>
</tr>
<tr>
<td>Green</td>
<td>528 nm ± 8 nm</td>
<td>40 nm</td>
<td>0 – 2500 µmol m⁻² s⁻¹</td>
</tr>
<tr>
<td>Blue</td>
<td>475 nm ± 10 nm</td>
<td>28 nm</td>
<td>0 – 2500 µmol m⁻² s⁻¹</td>
</tr>
<tr>
<td>White</td>
<td>425 – 700 nm</td>
<td>31 nm</td>
<td>0 – 2500 µmol m⁻² s⁻¹</td>
</tr>
<tr>
<td>Far-red</td>
<td>730 nm ± 5 nm</td>
<td>31 nm</td>
<td>Up to 30% of PFD</td>
</tr>
</tbody>
</table>

Why is far-red important?
Far-red (700-750 nm) is approximately 18% of the photon flux in sunlight. Far-red makes up an even larger fraction of the photon flux in understory conditions.

Recent research shows that this far-red light is photosynthetically active. Taking photosynthesis measurements with a light spectrum that does not include far-red (e.g., white or red/green/blue LEDs) will result in lower photosynthetic rates compared to photosynthetic rates under sunlight (with the same PFD). The ability to control the amount of far-red light during photosynthesis measurements more accurately mimics rates under sunlight or understory conditions.

PLC4 Broad/Narrow/Conifer LED Light Unit (RGBW-FR)
A single light unit for all three heads — saving cost, space & weight in the field

The PLC4 Broad/Narrow/Conifer LED Light Unit is uniquely designed as an interchangeable RGBW-FR light source for all three heads of the PLC4 Broad/Narrow/Conifer Leaf Cuvette. Effortlessly connect our light units to the corresponding leaf cuvette head for use on cloudy days or for controlled light experiments, or remove for ambient measurements.

Powerful, Customizable & Intuitive

Advanced

The highly accurate CIRAS-4 Portable Photosynthesis System is a lightning-fast portable powerhouse that will elevate your research experience. Its advanced software is exceptionally intuitive and customizable, offering the ultimate user experience. Manage environmental controls—and how you view your data—all from the touchscreen. It’s so easy to use, you can begin taking measurements right out of the box.

The Ultimate User Experience

Advanced touch navigation & outstanding readability

The CIRAS-4 offers highly responsive advanced touch navigation for all system operations from its large, full-color sunlight-readable touchscreen offering unsurpassed readability even under high sunlight conditions. Its ergonomically designed console offers a 30° viewing angle to comfortably view the display from just about any position in the field.

Your first measurements in minutes

Got a question? Built-in system help and user tutorials are designed to guide even the most inexperienced user every step of the way.

Program Experiments & Share with Colleagues from Anywhere

CIRAS-4 Response Script Editor

Programming experiments from any PC is effortless with the CIRAS-4 Response Script Editor. Easily create, edit, and modify your own response curve scripts. Once created, simply upload to the CIRAS-4 console for execution or share with colleagues that may want to replicate your experiment.

Remote operation & display

Presenting information or utilizing the CIRAS-4 as a teaching tool? Operating the CIRAS-4 remotely on any PC is a popular feature for those particular applications, and more.
Your Data Your Way

It's all about the data. Not only can you trust the CIRAS-4 to provide highly accurate data quickly, you can customize your entire data collection and research experience all from the touchscreen.

Data files & comments that are uniquely yours
Create your own unique file names using letters, numbers, and symbols and adding comments for further detail is quick and easy.

Unique multi-user profile system
Set up to eight unique profiles based on application, user, experiment, etc.—very useful when multiple users share a single system.

Stability criteria
Set your own stability criteria for up to 12 parameters to alert you and the system when measurements are stable and ready to record.

Choose how you view your data
Graph up to six parameters at a time during measurement, including zoom, pause, and resume, and easily customize the X and Y axis for each parameter.

Data storage & transfer
Store your data using the CIRAS-4’s 32 GB of internal memory. Easily transfer your data to your PC via a USB flash drive for further analysis in your spreadsheet program of choice.

Parameters

Measured

<table>
<thead>
<tr>
<th>CO₂ Reference</th>
<th>Cuvette Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO₂ Analysis</td>
<td>Leaf Temperature</td>
</tr>
<tr>
<td>CO₂ Differential</td>
<td>PAR Internal</td>
</tr>
<tr>
<td>H₂O Reference</td>
<td>PAR External</td>
</tr>
<tr>
<td>H₂O Analysis</td>
<td>Relative Humidity</td>
</tr>
<tr>
<td>H₂O Differential</td>
<td>Flow</td>
</tr>
<tr>
<td>Air Temperature</td>
<td>Leaf Area</td>
</tr>
</tbody>
</table>

Calculated

<table>
<thead>
<tr>
<th>Assimilation (A)</th>
<th>Intercellular CO₂ (Ci)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stomatal Conductance (gs)</td>
<td>Evaporation/Transpiration (E)</td>
</tr>
<tr>
<td>Vapor Pressure Deficit (VPD)</td>
<td>Water Use Efficiency (WUE)</td>
</tr>
</tbody>
</table>
Valuable Versatility

A single instrument capable of multiple applications.

Expand your measurement capabilities with field-ready plug & play accessories. All CIRAS-4 accessories are lightweight & designed to connect directly to the console, further enhancing the process of discovery.

Soil CO₂ Efflux

The popular SRC-2 Soil Respiration Chamber is the industry standard for rapid, accurate survey measurement of soil CO₂ efflux. The lightweight chamber is constructed of rugged PVC with a convenient handle for placement on the soil surface. A stainless steel ring provides a good seal on the soil surface or on collars.* A built-in temperature sensor measures air temperature near the soil surface.

- **Dimensions**: 150 mm (H) x 100 mm (D)
- **Volume**: 1171 ml
- **Area**: 77.6 cm²
- **Cable Length**: 1.5 meters
- **Weight**: 0.9 kg

* Temperature Sensor (Precision Thermistor)
- **Range**: -5 to 50 °C
- **Accuracy**: ± 0.5 °C at 25°C

Net Canopy CO₂ Flux

The CPY-5 Canopy Assimilation Chamber is ideal for measurement of net canopy CO₂ flux on low-lying vegetation and fruit. Constructed of rugged polycarbonate, the interior of the transparent chamber includes a user-adjustable PAR (Photosynthetically Active Radiation) sensor and an air temperature sensor near the soil surface. An aluminum ring provides a good seal on the soil surface or on collars.*

- **Dimensions**: 145 mm (H) x 146 mm (D)
- **Area**: 167 cm²
- **Cable Length**: 1.5 meters
- **Weight**: 1.05 kg

* Temperature Sensor (Precision Thermistor)
- **Range**: -5 to 50 °C
- **Accuracy**: ± 0.5 °C at 25°C

PAR Sensor
- **Fully cosine corrected**
- **Range**: 0-3000 µmol m⁻² s⁻¹
- **Accuracy**: ± 5 µmol m⁻² s⁻¹
- **Precision**: 1 µmol m⁻² s⁻¹

Insect Respiration

Our Insect Respiration Chamber can be used to measure CO₂ respiration from small insects.

- **Chamber Dimensions**: 15.1 cm (L) x 25 cm (D)
- **Chamber Volume**: 33 cm³ (not including gas tubing)
- **Chamber Weight**: 65 g

Custom Chambers? No Problem.

The CIRAS-4 console can be used as a stand-alone CO₂ and H₂O differential gas analyzer. Custom chambers are easily integrated in the laboratory or field.
Training & Technical Support

With you in the field & for the life of your system.

We want you to have the best possible experience & fully utilize your instrument’s capabilities from day one.

Hands-On Training

Our goal with any of our instruments is that you not only understand basic operating procedures, but that you use the instrument to its fullest capacity. We will get you up to speed quickly as well as provide valuable tips and tricks to further enhance your user experience.

Our instructor-to-student ratio is intentionally kept low to guarantee personalized attention. True hands-on training ensures the maximum benefit of attending the course.

"The training provided by PP Systems was exceptional. The training covered aspects ranging from basic setup to advanced techniques of chlorophyll fluorescence. The step-by-step instruction made disseminating the knowledge gained with my other lab members quite easy.”

— Lauren Pile
Clemson University

Technical Support

Prompt service and support is paramount and we are highly responsive to all requests.

“Whenever we had issues or concerns, the team at PP Systems has been very responsive and helpful troubleshooting and providing solutions.”

— Dr. Alan N. Lakso
Cornell University

Pioneering the Field Research Experience

The exception has become the rule

Innovation has always been synonymous with CIRAS Portable Photosynthesis Systems. Our introduction of automatic and programmable CO₂ and H₂O control as well as the use of 8g CO₂ cartridges — features that have been standard on all CIRAS systems dating back to 1992 — have since become the industry standard and we wouldn’t have it any other way.

Our constant innovation is centered around designing scientific instruments that eliminate obstacles and elevate the research experience.

The CIRAS-4 Experience

With the CIRAS-4, you collect highly accurate data at a rapid pace with the most advanced and mobile instrument of its kind, making for an exciting research experience that ignites the desire to explore further and we’re with you every step of the way. Let’s elevate your research.

Trusted & Tested Technology

Since 1984

PP Systems has proudly designed and manufactured instrumentation to meet the technology needs of plant and soil scientists since 1984.

Our extensive experience working closely with scientists to provide the best possible research tools, along with our drive to constantly enhance the research and educational experience has afforded us the honor of being one of the most highly referenced global standards in more than 100 countries worldwide.
Technical Specifications

CIRAS-4 Portable CO₂/H₂O Gas Analysis System

Analysis System
Non-dispersive infrared, configured as an absolute absorbptiometer with microprocessor control of linearization. Four independent gas analyzers simultaneously measure absolute CO₂ and H₂O for both the reference and analysis gas streams. All measurements are corrected for temperature and pressure.

CO₂ Measurement
- Range: 0 – 10000 µmol mol⁻¹
- Accuracy: ± 3 µmol mol⁻¹ at 300 µmol mol⁻¹
- Precision: 0.1 µmol mol⁻¹

H₂O Measurement
- Range: 0 – 75 mmol mol⁻¹
- Accuracy: ± 0.08 mmol mol⁻¹ up to 5 mmol mol⁻¹
- Precision: 0.01 mmol mol⁻¹

Air Sampling
User-adjustable from 50 – 200 cc min⁻¹ using integral DC pumps. Both analysis and reference pumps are fitted with mass flow controllers.

Cuvette Air Supply Unit (Integral)
For connection to the SRC-2 Soil Respiration Chamber and CPY-5 Canopy Assimilation Chamber.

Cuvette Stirring
Glass.

Window
Air mixing fan plus two additional miniature air mixing fans.

PAR Sensor (Internal)
- 2 silicon photodiode sensors.
- Range: 0 – 3000 µmol m⁻² s⁻¹
- Precision: ± 0.1 µmol m⁻² s⁻¹

Sensor Type
Infrared sensor for accurate, non-contact measurement.

Leaf Temperature Sensor
- ± 0.5 °C at 25 °C
- ± 5 µmol m⁻² s⁻¹ at 25 °C

Dimensions
- 6.0 cm (L) x 10.9 cm (W) x 2.5 cm (H)

Weight
- 1.5 m

Temperature Control
- 12 °C below ambient to 15 °C above ambient.
- Control limits: 0 – 45 °C
- Setpoint resolution: 0.1 °C

Detector Method
Proportional Integral photodiode.

Power Supply/Charger
Internal memory 32 GB.

Internal Memory
528 MHz ARM® Cortex™.

Touch Display
7.0” capacitive touch LCD display (800 x 480 pixels).

External Air Filtration
May be used for external air filtration, improving accuracy and performance.

Power Supply
Two internal, rechargeable 7.2V Li-ion battery packs (Primary) provide up to 16 hours of continuous use. A third interchangeable battery pack (Reserved) further extends operation time. The power supply/charger can charge all three batteries simultaneously.

Operating Temperature Range
- ± 0.5 °C at 25 °C
- ± 5 µmol m⁻² s⁻¹

Operating Range
- CO₂: 0 – 2000 µmol mol⁻¹
- H₂: 0 – 2000 µmol mol⁻¹

Gas Connections
1/8” female Barb fitings for connection to standard tubing.

Soil Ring
- Aluminum. Provides good seal on soil or soil collars.

Dimensions
- 150 mm (H) x 100 mm (Diameter)
- Weight: 0.9 kg

CIRAS-4 LED Light Units (RGBW-FR)

Automatic Control Range
0 – 2500 µmol m⁻² s⁻¹

LED Specification
- Wavelength (RGBW): 425 – 700 nm
- Full Width at Half Maximum: 15 nm
- Peak: 625 nm ± 5 nm

Detector
PIN photodiode with >700 nm filter.

Detector Method
Rapid pulse peak tracking.

Modulating Beam
625 nm ± 5 nm (Red)

Saturation Light
- 0 – 10000 µmol m⁻² s⁻¹
- 33 cm² (not including gas tubing)

Leaf Area
15.1 cm (Length) x 25 cm (Diameter)

Weight
- 65 g

External Air Filtration
Available from PP Systems.

Insect Respiration Chamber
- Clear acrylic.
- Barb fittings for connection to 1/8” flexible tubing.

Dimensions
- 145 mm (H) x 146 mm (Diameter)
- Weight: 0.9 kg

CFM-4 Chlorophyll Fluorescence Module

Automatic Control Range
0 – 2500 µmol m⁻² s⁻¹

LED Specification
- Wavelength (RGBW): 425 – 700 nm
- Full Width at Half Maximum: 15 nm
- Peak: 625 nm ± 5 nm

Detector
PIN photodiode.

Detector Method
Rapid pulse peak tracking.

Modulating Beam
625 nm ± 5 nm (Red)

For further information, please contact us at:
110 Haverhill Road, Suite 301
Amesbury, MA 01913 U.S.A.

TEL +1 978-834-0505
FAX +1 978-834-0545
EMAIL sales@ppsystems.com

© 2023 PP Systems. All rights reserved.